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Abstract. In recent years, Automatic Speech Recognition (ASR) tech-

nologies which enable the conversion from human speech into text and

thus facilitate human-computer interaction have drawn significant at-

tention. However, the concerns on the security of the ASR systems have

been ever growing. Some attackers can introduce malicious perturba-

tions into the inputs of ASR, potentially affecting or manipulating the

system’s functions. Therefore, identifying and defending against such

attacks is crucial. One effective approach is to understand the essence

of these attacks from the attacker’s perspective.

Currently, research in this area primarily involves adding pertur-

bations to speech to generate adversarial audio samples. While these

attacks often achieve a high success rate, most studies neglect the

imperceptibility of such perturbations to human listeners. The ideal

perturbation should be nearly imperceptible to humans yet highly dis-

ruptive to ASR systems, causing them to produce incorrect outputs. In

our work, first we framed the generation of adversarial audio samples

as a mathematical optimization problem. Then we focused on deter-



mining the optimal L2 norm, which would render the generated per-

turbation akin to environmental noise. In this process, we employed

the Projected Gradient Descent (PGD) method to iteratively create

adversarial samples with the best performance. In addition, we set hy-

perparameters adaptively for the optimization problem to enhance ef-

fectiveness. We utilized the open-source ASR system DeepSpeech and

conducted tests on the adversarial samples in a relatively quiet en-

vironment. The results of our experiments indicate that our method

achieves a high attack success rate and shows promising performance

SNR (Signal-to-Noise Ratio) and WER (Word Error Rate).
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1 Introduction

Automatic speech recognition (ASR) is a technology that enables the recogni-

tion and translation of spoken language into text by computers. With the prolifer-

ation of smart devices and advancements in machine learning technologies, Deep

Neural Network (DNN)-based ASR systems are widely used to enhance human-

computer interaction capabilities. Smart Home technologies, Siri, and Google As-

sistant are all good samples of the application of ASR.

However, research suggests that ASR systems can be susceptible to malicious

attacks [1]. Specifically, one of the most state-of-the-art methods is to add per-



turbation to the audio input of ASR to cause the system to produce incorrect

recognition output. Such audio inputs are also called audio adversarial samples.

The adversarial attacks are posing a growing threat to users’ data privacy, finan-

cial security, or even safety. Therefore, it is of great importance to understand the

essence of audio adversarial samples and improve the system’s resilience from a

defender’s perspective.

Essentially, the principle of adversarial sample creation primarily exploits the

non-linearity and overfitting characteristics of machine learning models. Due to

these characteristics, slight variations in the input data can cause significant

changes in the model’s classification or regression results, leading to erroneous

outputs. Typically, adversarial audio samples have two requirements: impercepti-

bility to the human ear and erroneous recognition by ASR systems. For instance,

as shown in Fig. 1, when the original audio clip conveys only the message ’You

are so beautiful’, a malicious attacker can introduce perturbations into this audio

sample before it is input into the system. In this case, the audio heard by the hu-

man ear remains almost unchanged, but the text recognized by the ASR system

changes to ’Pay bob 1000 dollars,’ prompting the system to perform a transaction,

thus causing financial loss to the user.

The academic and industrial communities have already conducted some re-

search on adversarial samples. Essentially, adversarial samples can be classified

into black-box attacks, white-box attacks, targeted attacks, and untargeted at-



Fig. 1. An illustration of the adversarial attack against ASR system

tacks, etc. There are also algorithms for generating adversarial samples, such as the

Fast Gradient Sign Method (FGSM) [2], Projected Gradient Descent (PGD) [3],

and One Pixel Attack. Some researchers are investigating how to minimize the

impact of adversarial attacks, with common methods based on input transforma-

tion or audio processing techniques, such as down-sampling, quantization, signal

smoothing, filtering, and audio compression. However, these methods can easily

be compromised under adaptive attacks. Therefore, adversarial sample attacks

remain a potential threat in ASR systems, and analyzing and designing attack

methods is crucial for enhancing the system’s defense capabilities.

We noticed that most research on adversarial samples focuses on how to pro-

duce incorrect transcriptions in ASR systems, which is undoubtedly an important

aspect. However, the imperceptibility of the perturbation is equally important in

the sense of performing undetectable attacks. Therefore, we designed a method

to generate adversarial samples for both targeted and untargeted attacks that

ensures good imperceptibility to human ears while still causing the ASR system



to transcribe incorrectly. In the meanwhile, since our evaluation was conducted

on the open-source ASR system DeepSpeech [4], it can be categorized as a white-

box attack. Our contributions to the improved design of adversarial samples are

summarized as follows:

– With the requirement of ensuring that the perturbations closely resemble envi-

ronmental noise, we generated both targeted and untargeted adversarial sam-

ples that can lead to incorrect transcriptions in ASR systems.

– Using a real dataset, we tested these adversarial samples on the open-source

ASR system DeepSpeech in terms of attack success rate, WER, and SNR,

demonstrating the effectiveness and robustness of our solution.

The rest of this article is organized as follows: Section 2 introduces work

and terms related to adversarial sample attacks, equipping readers with necessary

background information. Section 3 delves into the details of our proposed solu-

tion. Section 4 discusses the experiment plan and presents the results. Finally, a

summary is provided in the conclusion section.

2 Related Work

In this section, we will introduce some existing research related to adversarial

samples.

White-box and Black-box Attacks. White-box attacks refer to scenarios where the

attacker has full access to the ASR system they are targeting, including training



data, model structure, hyperparameters, activation functions, and model weights.

Black-box attacks, on the other hand, occur when the attacker does not have ac-

cess to the implementation details and parameters of the targeted system, and can

only obtain the output of the model being attacked. Current academic research

on white-box attacks includes gradient-based optimization attacks designed for

the end-to-end ASR system DeepSpeech, with a success rate of 100% [5]; embed-

ding malicious perturbations into popular music [6]; using impulse responses to

simulate reverberation to increase the robustness of adversarial samples [7]; and

minimizing the perceptibility of adversarial perturbations using psychoacoustic

hiding [8]. Research on black-box attacks includes combining genetic algorithms

with gradient estimation techniques using CTC [9]; using evolved multi-objective

optimization methods to attack ASR systems in untargeted and targeted set-

tings [10]. Improved optimization, genetic algorithms, and particle swarm opti-

mization methods are used to attack black-box ASR systems. The scope of our

work only involves white-box attacks.

Targeted and untargeted Attacks. Targeted attacks are those where the generated

adversarial samples are misclassified by DNNs as a specific category, usually oc-

curring in multi-classification problems. Untargeted attacks, on the other hand,

do not have specific requirements for the transcription results of the generated

adversarial samples; as long as the transcription is incorrect, the attack is con-

sidered successful, without restrictions on which category the adversarial samples



ultimately belong to. Because untargeted attacks offer more choices and a broader

range of outputs, they are easier to implement than targeted attacks. Our design

involves both types of attacks.

Generation Methods. The main methods for generating adversarial samples in

white-box attacks include the Fast Gradient Sign Method (FGSM) [2], Projected

Gradient Descent (PGD) [3], and One Pixel Attack [11]. FGSM is one of the

most famous methods for untargeted attacks and can be directly extended to

targeted attacks. Its basic idea is to enhance the linear behavior of DNNs in high-

dimensional space to produce adversarial samples. It is a single-step optimization

method of gradient ascent, with the optimization direction opposite to the direc-

tion of gradient descent of the trained model. As FGSM is a single-step method, it

is relatively fast. PGD is an improvement of FGSM. FGSM assumes the target is

a linear model, where the derivative of the loss function with respect to the input

is fixed, and the direction of perturbation is clear. However, DNNs are nonlinear

models, and the result generated in a single iteration is not necessarily correct.

Therefore, PGD is a multi-iteration algorithm that adjusts the perturbation within

a specified range in each iteration and can be seen as FGSM performed K times.

One Pixel Attack, as the name implies, allows only one pixel of the image to be

modified and uses differential evolution to maximize the difference between input

and output. Due to the exhaustive nature of differential evolution, it is very inef-

ficient and generally used only when gradient information cannot be obtained. In



our design, we used the PGD algorithm to generate adversarial samples, ensuring

both good results and performance.

Defense Methods. Compared to the image field, there are fewer studies on de-

fenses against adversarial attacks in the audio field. These mainly include down-

sampling [12], quantization [13], signal smoothing [14], and audio compression [15].

We tested the attack performance based on down-sampling and quantization, so

we will only introduce these two defense methods here. The principle of down-

sampling is to reduce the sampling rate of the original signal, thus reducing the

amount of sample data per unit of time, i.e., reducing the data volume of the

original signal, thereby weakening the attack effect of adversarial samples. Quan-

tization maps the original continuous speech signal to a set of discrete values,

reducing the signal resolution to decrease the ASR system’s sensitivity to pertur-

bations, which can lead to information loss and reduced recognition accuracy.

3 Solution

3.1 Threat Model

In our work, we evaluate white-box attacks on open-source ASR models under

both targeted (e.g., changing a password for a website account) and untargeted

scenarios (e.g., obtaining incorrect transcriptions), through which attackers can

engage in malicious activities. Here, we first analyze the generation strategies and

scenarios of adversarial samples.



Initially, we established two scenarios, E1 and E2, set with different and small

noise ranges: E1 between 0dB − 20dB, and E1 between 20dB − 70dB. We expect

that if our adversarial samples can achieve good imperceptibility to human ears in

milder noise environments, they will also perform well in the noisier environments,

thus, we did not conduct further experiments in the higher noise settings. Next,

we divided the generation of adversarial samples into two parts: machine tran-

scription errors and human ear imperceptibility, using Connectionist Temporal

Classification (CTC) [18] as the loss function and L2 norm to measure, respec-

tively. Hyperparameters are introduced to balance the weights of these two parts,

transforming the generation of adversarial samples into an optimization problem

to obtain optimal results, and adapting hyperparameters according to environ-

mental thresholds. All tests were conducted on the ASR model DeepSpeech.

3.2 Problem Formulation

ASR Model The original audio signal is represented as x, and f(·) denotes the

processing of the original signal by the ASR model based on DNNs. The correct

transcription obtained by the ASR from the original x is denoted as y = f(x).

Adversarial Samples A perturbation δ is added to the original audio signal x,

resulting in x′ = x + δ, where x′ is the adversarial sample we aim to create.

The corresponding incorrect transcription is y′ = f(x + δ) = f(x′), with y ̸= y′.

For targeted attacks, the goal is to make f(x + δ) approximate a target t, i.e.,

f(x+ δ) = t. To ensure that the adversarial sample remains a valid audio signal,



we need to constrain the amplitude of the adversarial sample within a certain

range, such that −ε ≤ x+ δ ≤ ε.

Ambient Noise The ambient noise is denoted as n. To approximate the perturba-

tion δ to the environmental noise as closely as possible, we introduce the L2 norm

∥δ − n∥2 to control the difference between n and δ, ensuring it is less than the

maximum amplitude threshold ε of the adversarial sample, i.e., ∥δ − n∥2 ≤ ε.

Therefore, given the original audio signal x and the ASR model f(·), we

need to find a perturbation δ that satisfies the following constraints to obtain the

adversarial sample x′ = x+ δ:

f(x+ δ) ̸= f(x)

such that x+ δ ∈ [−ε, ε],

∥δ − n∥2 ≤ ε.

(1)

Where f(·) represents an ASR system, and our motivation for L2 norm is its

desirable properties, including interpretability, cross-dimensional equilibrium dis-

tribution, continuity, and differentiability. The L2 norm helps to make smoother

modifications to the speech signal, thus mitigating the presence of perceived per-

turbation.

3.3 Targeted Attacks

For targeted attacks, our objective under scenarios E1 and E2 is to obtain

a perturbation δ approximating the environmental noise n, such that the ASR’s



incorrect transcription f(x + δ) closely matches the target transcription t. We

formulate this problem as an optimization of the objective function for δ based

on Equation (1). Our objective function is divided into two parts: (1) ensuring

the adversarial sample’s incorrect transcription f(x+ δ) is as close as possible to

the target transcription t; (2) ensuring the difference between the perturbation δ

and the environmental noise n is minimized to enhance imperceptibility to human

ears.

For the first part, we introduce the CTC loss function to measure this, denoted

as lASR, and minimizing the difference between f(x+ δ) and t can be represented

as:

min lASR(f(x+ δ), t)

such that x+ δ ∈ [−ε, ε]
(2)

For the second part, we introduce the L2 norm, and the problem can be

represented as:

min ∥δ − n∥2

∥δ − n∥2 ≤ ε

(3)

To integrate these two parts into a single objective function, we use a hy-

perparameter α1 to balance the weights of these two parts. Thus, finding the

optimal perturbation δ for the adversarial sample is transformed into minimizing



the following objective function:

minT = (1− α1) · LASR(f(x+ δ), t) + α1 · ∥δ − n∥2 (4)

3.4 Untargeted Attacks

For untargeted attacks, the search for the perturbation δ can also be divided

into two parts: (1) mislead the ASR system to obtain an incorrect transcription

f(x+ δ) ̸= f(x), ensuring f(x+ δ) is as dissimilar to f(x) as possible; (2) ensure

that the gap between the perturbation δ and the environmental noise n is as small

as possible, to enhance the imperceptibility to human ears. The first part can be

represented as max lASR(f(x + δ), y), which we transform into a minimization

problem:

min−lASR(f(x+ δ), y) (5)

such that x+ δ ∈ [−ε, ε]

The second part is the same as for targeted attacks. After integrating using

the hyperparameter α1, finding the optimal perturbation δ for the adversarial

example is transformed into minimizing the following objective function:

minUT = −(1− α1) · LASR(f(x+ δ), t) + α1 · ∥δ − n∥2 (6)

3.5 Adversarial Sample Generation

We use the PGD algorithm to solve Equations (4) and (6). To ensure the

effectiveness of the adversarial samples, we introduce the equation δ = ε · tanh(z),



which allows the adversarial perturbation δ to find its optimal value under the

unconstrained optimization of z, ensuring that the final result falls within our

expected range. Hence, the perturbation δ can be iteratively generated through

the following equation:

δ0 = 0

δt+1 = ε · tanh(δt − α · sign(∇xL(f(x), y)))

(7)

where t is the iteration number and α is the learning rate. The complete process

can be described by Algorithm 1.

Algorithm 1: Use PGD method to generate adversarial samples

Input : Speech signal x, target adversarial transcription t, ASR system

f(·), hyperparameters a1, learning rate α, number of steps steps

Output: Adversarial samples x+ δ

1 Function generate()

2 Initialize: z ← 0;

3 for t = 1 to steps do

4 l← (1− a1) · lASR(f(x+ δ), t) + a1 · ∥δ − n∥2;

5 z ← z − α · sign(∇zl);

6 δ ← ϵ · tanh(z);

3.6 Hyperparameter Adaptive

The problem of determining the hyperparameter α1 in the objective function

is resolved by considering the distance between the background noise and the en-



vironmental threshold. As previously mentioned, the two environments we tested

are:

Scenario


θ1 ≤ E1 ≤ θ2

θ0 ≤ E2 ≤ θ1

where θ0 = 0dB, θ1 = 20dB, θ2 = 70dB. Using bg to represent the background

noise and maxj(θj) to denote the threshold of the environment, we can calculate

the distance between them as:

ds = |bg −maxj(θj)| (8)

When the scenario background approaches the threshold, that is, as the back-

ground noise increases, the value of α1 nonlinearly decreases with the reduction

of ds. This results in a reduced weight for the adversarial perturbation δ in ap-

proximating the environmental noise n. Here, we use the sigmoid function [16],

obtaining the following expression to solve for the value of α1, allowing α1 to

adaptively change with the environment:

a1 =


1− 0.5

1+e

−

bg 1

2(maxj(θj)))


, bg ∈ (θ0, θ1]

0.5− 0.5

1+e−(bg−1/2(maxj(θj)))
, bg ∈ (θ1, θ2]

(9)



4 Experiment

4.1 Experimental Setup

Settings Our experiments were conducted on a host equipped with four GeForce

RTX 2080 Ti GPUs, with the Ubuntu 18.04 LTS operating system installed.

The Python scripts and TensorFlow were utilized to implement our approach.

DeepSpeech 0.4.1 was employed as the ASR model.

Dataset LibriSpeech [17] was chosen as the target dataset. It is a corpus of ap-

proximately 1000 hours of read English speech with sampling rate of 16 kHz. Its

dev-clean subset comprises a total of 2,703 samples, from which we randomly se-

lected 500 samples for our experiments. These samples have an average duration

of 3 seconds and can be transcribed into an average of 9 words.

4.2 Evaluation metrics

Word Error Rate (WER). The word error rate (WER) is used to measure the

error rate of the predicted text compared to the standard text and is an important

indicator for evaluating ASR systems. The gap between these two texts can be

calculated using the Levenshtein distance algorithm, with the formula as follows:

WER =
S +D + I

N
=

S +D + I

S +D + C

where S, D, and I respectively represent the number of substitutions, deletions,

and insertions needed to transform the predicted text into the standard text.



N represents the total number of words in the standard text. C represents the

number of words correctly recognized in the predicted text.

Signal-to-noise ratio (SNR). Signal-to-Noise Ratio (SNR) refers to the ratio of the

perturbation δ to the original signal x, used to quantify the amount of distur-

bance added to the signal, measured in decibels (dB). It can be calculated by the

following formula:

SNR(dB) = 10 · log10
(
Px

Pδ

)

where Px and Pδ represent the energies of the original signal and the perturbation,

respectively. It can be observed that the higher the SNR ratio, the less distortion

is caused by the perturbation.

Success rate of attack (SRoA). The Success Rate of Attack (SRoA) represents

the ratio of successful attacks to the total number of attacks. Clearly, the higher

the success rate, the better the attack algorithm. It can be calculated using the

following formula:

SRoA =
Ns

Na

where Na is the total number of audio adversarial samples input into the ASR

system, and Ns is the number of audio adversarial samples that are mistranscribed

by the ASR system. SRoA is one of the most widely used evaluation metrics in

the study of audio adversarial samples. For our work, we aim to achieve a higher

SRoA to demonstrate the effectiveness of our adversarial samples.



4.3 Results and Discussion

Attack Performance We use the PGD method to generate adversarial samples,

and it can be observed that a parameter ε is used to restrict the amplitude of the

adversarial samples in Equation (7). This parameter not only limits the amplitude

of the adversarial samples within a certain range to ensure their effectiveness but

also limits the similarity between the perturbation δ and the environmental noise

n.

We gradually increased the value of ε in steps of 5 and tested the generation

time of adversarial samples, SNR, WER, and SRoA under different values of ε

to determine its optimal value, with results shown in Tables 1 and 2. Table 1

shows the performance of various metrics under different values of ε in the case

of targeted attacks. Due to space limitations, we only display a portion of the

results near the optimal value of ε. It can be seen that when ε is set to 20, the

generation time of the adversarial samples is approximately 274.05s, the shortest,

with SNR at 38.83 dB and WER at 199.47% being the highest, and the success

rate of attack also reaching 100%, which is superior compared to other values of

ε.

Table 1. Different ϵ under targeted attack

ϵ Time(s) SNR(dB) WER(%) SRoA(%)
5 276.95 32.04 188.55 96
10 276.34 35.61 194.31 99
20 274.05 38.83 199.47 100
30 278.66 36.17 198.67 100
40 275.14 31.68 190.15 100



Table 2 shows the performance of various metrics under different values of

ε in the case of untargeted attacks. It is evident that when ε is set to 70, the

generation time of the adversarial samples is approximately 277.17s, with SNR at

33.25 dB and WER at 140.4% being the highest, and the success rate of attack

also being 100%. Although the generation time is relatively longer, to achieve the

best performance of adversarial samples in terms of SNR, WER, and SRoA, we

believe that the optimal value of ε is 70.

Table 2. Different ϵ under untargeted attack

ϵ Time(s) SNR(dB) WER(%) SRoA(%)
50 280.42 29.89 132.35 97
60 275.03 32.01 138.33 100
70 277.17 33.25 140.4 100
80 271.86 28.29 138.92 100
90 274.59 26.25 135.55 100

When we determined the optimal values of ε as 20 for targeted attacks and 70

for untargeted attacks, we retested the aforementioned metrics in environments

E1 and E2. The results are shown in Tables 3 and 4. In both environments,

all metrics performed well. Time, SNR, and SRoA were not significantly different

from the previous results. However, since the environmental noise was restricted

to a smaller range, the interference to the ASR system was also reduced, leading

to a slight decrease in the WER values.

Hyperparameter a1 In addition to the parameter ε, we also introduced a hyper-

parameter α1 to balance the weights of the two parts of the objective function,



Table 3. Targeted attack at ϵ = 20

Time(s) SNR(dB) WER(%) SRoA(%)
E2 298.25 38.83 140.29 100
E1 270.29 38.83 130.06 100

Table 4. Untargeted attack at ϵ = 70

Time(s) SNR(dB) WER(%) SRoA(%)
E2 275.25 33.25 135.59 100
E1 274.69 33.25 138.77 100

with its value varying according to a segmentation function based on the scenario

background. Therefore, we also tested the impact of α1 on WER and SNR. Fig.

2 and 3 show the impact of α1 on WER during targeted attacks in environments

E1 and E2, respectively. Fig. 4 and 5 respectively show the impact of α1 on SNR

during targeted attacks in environments E1 and E2.

Fig. 2. Targeted a1-WER in E1. Fig. 3. Targeted a1-WER in E2.

Fig. 6 and 7 respectively illustrate the impact of α1 on WER during untar-

geted attacks in environments E1 and E2. Fig. 8 and 9 respectively demonstrate

the impact of α1 on SNR during untargeted attacks in environments E1 and E2.

The results indicate that the impact of α1 remains relatively stable across

different scenarios. The WER metric maintains an average of 130%, while the



Fig. 4. Targeted a1-SNR in E2. Fig. 5. Targeted a1-SNR in E2.

Fig. 6. Untargeted a1-WER in E2. Fig. 7. Untargeted a1-WER in E2.

Signal-to-Noise Ratio (SNR) metric stays around 36%. The fluctuation in these

values has a consistent effect on the efficacy of the attacks within a reasonable

range. Additionally, the adaptive variation of the α1 value in different scenarios

achieves optimal concealment of the perturbation in the given environment.

Fig. 8. Untargeted a1-SNR in E2. Fig. 9. Untargeted a1-SNR in E2.



Defense Robustness We evaluated the attack performance of adversarial samples

against common defense methods such as down-sampling and quantization to

determine their robustness against these defenses.

As shown in Table 5, to assess the robustness of our adversarial samples

against defense methods, we performed down-sampling of the input audio signals

at different sampling rates (5.6KHz and 6.4KHz). We also conducted quantized

audio preprocessing using different quantization values (256, 512). The WER,

SNR, and SRoA of the adversarial samples were tested under these two defense

methods.

Table 5. Performance of adversarial samples under defense

Down-Sampling Quantization
5.6KHz 6.4KHz 256 512

WER(%) 92.77 95.36 105.14 100.81
SNR(dB) 12.03 14.81 15.15 13.59
SRoA(%) 100 100 100 100

The results indicate that for the down-sampling method, WER decreased

by approximately 17%, and SNR decreased by about 15%. For the quantization

method, WER decreased by approximately 8%, and SNR decreased by about 11%.

However, successful attacks with a 100% success rate could still be achieved under

these defense measures, indicating that our adversarial sample scheme maintains

good robustness even in the presence of certain defense mechanisms.



5 Conclusion

Research shows that ASR systems are susceptible to adversarial attacks,

which means that the privacy and financial security of ASR users are at risk.

Analyzing and enhancing adversarial attacks is crucial for improving the defense

capabilities of ASR systems. Our work focused on generating enhanced adversar-

ial samples. Specifically, we have framed the generation of adversarial samples as

a mathematical optimization problem, searching for the optimal solution while

restricting the difference between the perturbation and environmental noise. Ex-

perimental results indicate that our designed adversarial samples can successfully

attack ASR systems, showing good performance in metrics such as SNR andWER.

Additionally, we have verified that some common defense schemes are ineffective

against our adversarial samples, demonstrating their robustness.

6 Individual Contributions

Jingyi Tian

– Design scheme and develop solutions

– Conduct experiments

– Draft this report

Hongming Yu

– Set up experimental environment



– Conduct experiments

– Create report charts and graphs and compile report
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